# TaDataWriter Plug-in
# I. Introduction
TaDataWriter enables DataX to transfer data to the TA cluster, and the data will be sent to the TA's receiver.
# II. Functions and Limitations
TaDataWriter can convert the data from the DataX protocol to the internal data in the TA clusters. TaDataWriter has the following functions:
- Support and only support writing to TA clusters.。
- Support data compression. Existing compression formats are gzip, lzo, lz4, snappy.
- Support multi-thread transmission.
- Supported and only supported on TA nodes.
# III. Function Description
# 3.1 Sample configuration
{
"job": {
"setting": {
"speed": {
"channel": 1
}
},
"content": [
{
"reader": {
"name": "streamreader",
"parameter": {
"column": [
{
"value": "ABCDEFG-123-abc",
"type": "string"
},
{
"value": "F53A58ED-E5DA-4F18-B082-7E1228746E88",
"type": "string"
},
{
"value": "login",
"type": "string"
},
{
"value": "2020-01-01 01:01:01",
"type": "date"
},
{
"value": "abcdefg",
"type": "string"
},
{
"value": "2019-08-08 08:08:08",
"type": "date"
},
{
"value": 123456,
"type": "long"
},
{
"value": true,
"type": "bool"
}
],
"sliceRecordCount": 1000
}
},
"writer": {
"name": "ta-data-writer",
"parameter": {
"type": "track",
"appid": "34c703a885014208a737911748a7b51c",
"column": [
{
"index": "0",
"colTargetName": "#account_id",
"type": "string"
},
{
"index": "1",
"colTargetName": "#distinct_id"
},
{
"index": "2",
"colTargetName": "#event_name"
},
{
"index": "3",
"colTargetName": "#time",
"type": "date",
"dateFormat": "yyyy-MM-dd HH:mm:ss.SSS"
},
{
"index": "4",
"colTargetName": "testString",
"type": "string"
},
{
"index": "5",
"colTargetName": "testDate",
"type": "date",
"dateFormat": "yyyy-MM-dd HH:mm:ss.SSS"
},
{
"index": "6",
"colTargetName": "testLong",
"type": "number"
},
{
"index": "7",
"colTargetName": "testBoolean",
"type": "boolean"
},
{
"colTargetName": "add_clo",
"value": "addFlag",
"type": "string"
}
]
}
}
}
]
}
}
# 3.2 Parameter description
- type
- Description: written data type user_set, track
- Required: Yes
- Default value: none
- appid
- Description: project appid.
- Required: Yes
- Default value: none
- thread
- Description: number of threads.
- Required: No
- Default value: 3
- compress
- Description: text compression type. By default, non-filling means no compression. Supported compression types are gzip, lzo, lz4 and snappy.
- Required: No
- Default value: no compression
- connType
- Description: the way to accept data within the cluster, send it to receiver or send it directly to kafka.
- Required: No
- Default value: http
- column
- Description: read the list of fields.
type
specifies the type of data,index
specifies the current column corresponding toreader
(starting with 0).value
specifies the current type as a constant, does not read data fromreader
, but automatically generates the corresponding column according tovalue
.
- Description: read the list of fields.
The user can specify the Column
field information, configured as follows:
[
{
"type": "Number",
"colTargetName": "test_col", //generate column names corresponding to data
"index": 0 //transfer the first column from reader to dataX to get the Number field
},
{
"type": "string",
"value": "testvalue",
"colTargetName": "test_col" //generate the string field of testvalue from TaDataWriter as the current field
},
{
"index": 0,
"type": "date",
"colTargetName": "testDate",
"dateFormat": "yyyy-MM-dd HH:mm:ss.SSS"
}
]
- For user-specified Column information, one of
index
/value
must be selected,type
is not required. When setting thedate
type, you can setdataFormat
not required.- Required: Yes
- Default value: all read by reader type
# 3.3 Type conversion
The type is defined as TaDataWriter:
DataX internal type | TaDataWriter data type |
---|---|
Int | Number |
Long | Number |
Double | Number |
String | String |
Boolean | Boolean |
Date | Date |